
C4: Using HTTP Post 1

COM644 Full-Stack Web and App Development

Practical C4: Using HTTP Post

Aims
• To add functionality to retrieve and display sub-documents
• To introduce Bootstrap form classes
• To use the Angular FormBuilder to connecg the form template to the

component logic
• To introduce validation with Angular ReactiveForms
• To provide visual feedback associated with form validation
• To introduce two-way data binding
• To implement an http.post() request

Contents
C4.1 RETRIEVING SUB-DOCUMENTS ... 2

C4.1.1 UPDATE THE WEB SERVICE .. 2
C4.1.2 UPDATE THE COMPONENT ... 3
C4.1.3 UPDATE THE TEMPLATE .. 4

C4.2 FORMS .. 5
C4.2.1 CREATE THE FORM ... 6
C4.2.2 USING ANGULAR FORMBUILDER... 7
C4.2.3 SUBMITTING FORM VALUES ... 9

C4.3 VALIDATION WITH REACTIVE FORMS .. 11

C4.4 RETRIEVING AND POSTING FORM DATA ... 17
C4.4.1 TWO-WAY DATA BINDING ... 17
C4.4.2 POSTING THE DATA TO THE API .. 21

C4: Using HTTP Post 2

C4.1 Retrieving Sub-documents

So far, the WeMEANBusiness sample application provides functionality to page through a
collection of business element and display details on a single business. The data in our back-
end database also provides for a collection of reviews for each business, so in this session
we will first add functionality to display the collection of reviews with each business
description and then enable the user to add a new review for the business.

C4.1.1 Update the Web Service

First, we need to add functionality to display the reviews for a business below the business
information. The retrieval operation is quite straightforward and follows the same pattern
as retrieving information on the collection of businesses and on a single business.
(Implementation of this was left for you as an exercise in a previous practical.)

File: C4/src/app/web.service.ts

...
 private businesses_private_list = [];
 private businessesSubject = new Subject();
 businesses = this.businessesSubject.asObservable();

 private business_private_list = [];
 private businessSubject = new Subject();
 business = this.businessSubject.asObservable();

 private reviews_private_list = [];
 private reviewsSubject = new Subject();
 reviews = this.reviewsSubject.asObservable();
...

Next, we add the WebService function that calls the API endpoint to retrieve the reviews
of a business.

Here, we construct the API by appending the _id value of the business in question to the
URL and invoking the http.get() method. As before, the http.get() method returns
an Observable that we subscribe to with an arrow function that accepts the JSON data
returned from the API and broadcasts it in the reviewsSubject by invoking the Subject’s
next() method.

C4: Using HTTP Post 3

File: C4/src/app/web.service.ts

...

export class WebService {

...

 getReviews(id) {
 this.http.get(
 'http://localhost:3000/api/businesses/' + id +
 '/reviews')
 .subscribe(
 response => {
 this.reviews_private_list = response.json();
 this.reviewsSubject.next(
 this.reviews_private_list);
 }
)
 }
}

C4.1.2 Update the component

As the reviews will be displayed as part of the business description, we then update the
BusinessComponent by adding the call to the new WebService function to the existing
call to retrieve details of the business.

File: C4/src/app/business.component.ts

...

 ngOnInit() {
 this.webService.getBusiness(
 this.route.snapshot.params.id);
 this.webService.getReviews(
 this.route.snapshot.params.id);
 }

...

C4: Using HTTP Post 4

C4.1.3 Update the template

Now, we can update the BusinessComponent template to accept the list of reviews from
the Observable and display each review in a separate Bootstrap card below the card that
shows details of the business. We distinguish the review cards from the business
information card by specifying that reviews are presented in cards with the bg-light class
applied.

File: C4/src/app/businesses.component.html

...

<div class="container">
 <div class="row">
 <div class="col-sm-12">
 <div>
 <div class="card bg-light mb-3"
 *ngFor =
 "let review of webService.reviews | async">
 <div class="card-header">
 Review by {{ review.username }}
 on {{ review.date | date }}
 </div>
 <div class="card-body">
 {{ review.text }}
 <hr>
 <p>Votes:
 {{ review.votes.funny }} funny,
 {{ review.votes.useful }} useful,
 {{ review.votes.cool }} cool </p>
 </div>
 <div class="card-footer">
 {{ review.stars }}
 stars
 </div>
 </div>
 </div>
 </div> <!-- col -->
 </div> <!-- row -->
</div>

Checking in the browser reveals that the collection of reviews for the business are displayed
as intended.

C4: Using HTTP Post 5

Figure C4.1 Displaying reviews

Note: Our backend API only allows for the entire collection of reviews to be displayed at
once and does not allow us to specify the order in which they are retrieved. Two potential
enhancements would be (i) to allow the user to page through the reviews and (ii) to update
the API so that the reviews are sorted in order of date with the most recent reviews shown
first. These are left for you as an exercise.

C4.2 Forms

In order to invite the user to contribute a new review for the business, we will add an HTML
form below the list of reviews. Angular provides a powerful form specification and
manipulation facility that implements the form structure as a model and enables two-way
binding between the model and the form fields. We will see in this section how this two-
way binding provides a powerful validation tool as well as making it easy for us to retrieve
data from the form after submission.

As an initial step, we need to include the FormsModule and ReactiveFormsModule
classes in the application’s main app.module.ts file.

C4: Using HTTP Post 6

File: C4/src/app/app.module.ts

...

import { WebService } from './web.service';
import { HttpModule } from '@angular/http';
import { FormsModule, ReactiveFormsModule }
 from '@angular/forms';

...

 imports: [
 BrowserModule, HttpModule, RouterModule.forRoot(routes),
 FormsModule, ReactiveFormsModule
],

...

C4.2.1 Create the form

Next, we add a form to the BusinessComponent template with 3 fields

- A user name
- A free text review
- A star rating in the range 1-5

The user name is implemented as an HTML input box, the review is implemented as a
textarea component and the star rating is provided as a drop-down list (using the
<select> and <option> tags).

All style classes in the code at this stage are basic Bootstrap 4 properties – with the
exception of formControlName which is an Angular property that is used to bind the form
field to an element in the model that describes the data structure representing the form.

C4: Using HTTP Post 7

File: C4/src/app/businesses.component.html

...

 </div> <!-- col -->
 </div> <!-- row -->

 <h2>Please review this business</h2>
 <form>
 <div class="form-group">
 <label for="name">Name</label>
 <input type="text"id="name"
 class="form-control"
 formControlName="name">
 </div>
 <div class="form-group" >
 <label for="review">Please leave your review below
 </label>
 <textarea id="review" rows="3" name="review"
 class="form-control"
 formControlName="review"></textarea>
 </div>
 <div class="form-group">
 <label for="stars">Please provide a rating
 (5 = best)</label>
 <select id="stars" name="stars"
 class="form-control"
 formControlName="stars">
 <option value="1">1 star</option>
 <option value="2">2 stars</option>
 <option value="3">3 stars</option>
 <option value="4">4 stars</option>
 <option value="5">5 stars</option>
 </select>
 </div>
 <button type="submit"
 class="btn btn-primary">Submit</button>
 </form>

<div>

C4.2.2 Using Angular FormBuilder

Now that the form has been implemented in the template, we update the Component’s
TypeScript file to import the FormBuilder class, inject it into the Component class and
specify the model that describes the data structure represented by the form.

Note that we use ‘name’, ‘review’ and ‘stars’ as the field names in the model – matching
the values used for formControlGroup properties in the template.

C4: Using HTTP Post 8

File: C4/src/app/business.component.html

import { Component } from '@angular/core';
import { ActivatedRoute } from '@angular/router';
import { WebService } from './web.service';
import { FormBuilder } from '@angular/forms';

...

export class BusinessComponent {

 reviewForm;

 constructor(private webService: WebService,
 private route: ActivatedRoute,
 private formBuilder: FormBuilder) {

 this.reviewForm = formBuilder.group({
 name: '',
 review: '',
 stars: 5
 });

 }

...

We then complete the connection between the formBuilder.group() and the form by
specifying the reviewForm model as the value of the formGroup property in the <form>
tag.

File: C4/src/app/businesses.component.html

...

<h2>Please review this business</h2>
<form [formGroup]=”reviewForm”>

...

Now, when we run the application and click on an individual business entry, we should now
see the form to provide a new review displayed at the bottom of the page, as seen in Figure
C4.2 below.

C4: Using HTTP Post 9

Figure C4.2 A review form

This already demonstrates the binding provided by Angular. Note that we did not specify
any of the 5 radio buttons as selected in the form – yet Angular has chosen to use the ‘5
stars’ option as the default. This is actually specified in the formBuilder.group()
definition that we added to the BusinessComponent TypeScript file.

Try it now!

Change the default values provided for the model in business.component.ts and see how
they are then used as the initial values in the <form> when it is displayed.

C4.2.3 Submitting form values

Angular forms are submitted by binding a function to the form’s ngSubmit property. As a
first step, we will bind the onSubmit() function, which we then implement in the
BusinessComponent as a simple console.log() of the model.

C4: Using HTTP Post 10

File: C4/src/app/business.component.html

...

 <h2>Please review this business</h2>
 <form [formGroup]="reviewForm" (ngSubmit)="onSubmit()">

...

File: C4/src/app/business.component.ts

...

export class BusinessComponent {

 ...

 onSubmit() {
 console.log(this.reviewForm.value);
 }
}

Entering values into the form fields and clicking the submit button generates a browser
console message as shown in Figure C4.3 below.

C4: Using HTTP Post 11

Figure C4.3 Form values submitted

C4.3 Validation with Reactive Forms

Angular provides a powerful set of validation elements that can be used to change the
appearance or operation of the form in response to user input (or lack of input). In order to
apply validation, we first need to import the Validators class into the
BusinessComponent.

File: C4/src/app/business.component.ts

...

import { FormBuilder, Validators } from '@angular/forms';

...

Next, we specify that we want to ensure that data is provided for the name and review
fields of the form by adding the Validator.required property to the name and review
fields. We do this by converting the value of each formBuilder.group() property as a

C4: Using HTTP Post 12

list, where the first element is the default value to be used and the second is the validation
requirement. As the stars rating does not require validation (it is impossible to avoid
choosing one of the values), we have no change to make for that element.

Finally, we observe the effect of the validation by modifying the console.log to output the
form’s valid property

File: C4/src/app/business.component.ts

...

export class BusinessComponent {

 ...
 this.reviewForm = formBuilder.group({
 name: ['', Validators.required],
 review: ['', Validators.required],
 stars: 5
 });
 }

 ...

 onSubmit() {
 console.log(this.reviewForm.valid);
 }
}

...

When we check this in the browser we see that the value false is logged to the browser
console if the form is submitted with either of the name or review fields left blank.

We would like to use this validation to provide visual feedback to the user informing them
that a value for the field is required. First, we will add a style rule to the
business.component.css file that will be used to apply a light red background to unfilled text
entry fields.

File: C4/src/app/business.component.css

.error { background-color: #fff0f0; }

C4: Using HTTP Post 13

We also need to update the @Component specification in the BusinessComponent
TypeScript file to import the new CSS file.

File: C4/src/app/business.component.ts

...

@Component({
 selector: 'business',
 templateUrl: './business.component.html',
 styleUrls: ['./business.component.css']
})

...

Now, we bind the new error class to the <input> box for the user name when the
invalid property of the name control is true. The ngClass binding takes a JSON object (in
the form { name : value }) where the name element is the style rule and the value element
is the condition that must be satisfied for the rule to be applied. This code can be read as
“apply the error class to the name element when the contents of the form field are invalid”.
Whether or not the value is invalid is determined by the validation rule described in the
formBuilder.group() definition – i.e. that the value is ‘required’.

File: C4/src/app/business.component.html

...

 <input type="text" id="name"
 class="form-control"
 formControlName="name"
 [ngClass]="{ 'error':
 reviewForm.controls.name.invalid }" >

...

Checking in the browser shows that the text box is highlighted even before the user has had
an opportunity to enter any data. This is not exactly what we want, so we add another rule
to the [ngClass] definition to apply the background colour only if the field has been
touched (i.e. modified).

C4: Using HTTP Post 14

File: C4/src/app/business.component.html

...

 <input type="text" id="name"
 class="form-control"
 formControlName="name"
 [ngClass]="{ 'error':
 reviewForm.controls.name.invalid &&
 reviewForm.controls.name.touched }” >

...

This is a much more pleasing effect, so we apply the same rule to the review textbox.

File: C4/src/app/business.component.html

...

 <textarea id="review" rows="3" name="review"
 class="form-control"
 formControlName="review"
 [ngClass]="{ 'error':
 reviewForm.controls.name.invalid &&
 reviewForm.controls.name.touched }">
 </textarea>

...

This validation now works as required, but it can be easily seen that if we had a larger
number of text inputs on the form, this approach would lead to a large volume of duplicated
code. We can avoid this by re-factoring the code to implement the check for invalid input in
a function which accepts the name of the form control as a parameter.

C4: Using HTTP Post 15

File: C4/src/app/business.component.ts

...

export class BusinessComponent {

 ...

 isInvalid(control) {
 return this.reviewForm.controls[control].invalid &&
 this.reviewForm.controls[control].touched
 }

...

}

We can then modify the ngClass binding rule in the form to call the new function, passing
the name of the control as a parameter.

File: C4/src/app/business.component.html

...

 <input type="text" class="form-control" id="name"
 formControlName="name"
 name="name"
 [ngClass]="{'error': isInvalid('name')}" >

...

 <textarea class="form-control" id="review" rows="3"
 formControlName="review"
 name="review"
 [ngClass]="{'error': isInvalid('review')}" >
 </textarea>

...

Our final validation stage will be to provide a feedback message if the user attempts to leave
a required field blank, while at the same time removing the submit button to prevent invalid
submission. First we create a new function isIncomplete() that returns true if either
text input is invalid.

C4: Using HTTP Post 16

File: C4/src/app/business.component.ts

...

export class BusinessComponent {

 ...

 isIncomplete() {
 return this.isInvalid('name') ||
 this.isInvalid('review');
 }

...

}

Now, we apply this to a new object containing a message – and use the Angular
*ngIf directive to display either this message or the “submit” button. *ngIf is a very
useful feature that can be applied to any HTML element to dynamically modify the structure
and content of the page in response to dynamic activity.

File: C4/src/app/business.component.html

...

 You must complete all fields

 <button *ngIf="!isIncomplete()" type="submit"
 class="btn btn-primary">Submit</button>

 </form>

...

Viewing the application in the browser verifies that we now have the desired validation.

C4: Using HTTP Post 17

Figure C4.4 Invalid data and information message

C4.4 Retrieving and posting form data

Now that the review form is specified and validation is in place, we will add the functionality
that allows the values provided by the user to be POSTed to the API.

C4.4.1 Two-way data binding

We have already seen binding between the BusinessComponent’s
formBuilder.group() specification and the HTML form, but Angular provides a much
more extensive two-way binding that allows us to bind the form fields to a data structure
that can be used to provide direct access to form field values.

We implement this by first defining a review object that will be passed to the WebService
to specify the data needed to POST the review to the API.

C4: Using HTTP Post 18

File: C4/src/app/business.component.ts

...

export class BusinessComponent {

 reviewForm;

 review = {
 businessID: '',
 name: '',
 review: '',
 stars: 5
 }

...

}

Now we specify that this object is to be tied to the form fields by adding ngModel binding
between each form field and the relevant property in the new object.

File: C4/src/app/business.component.html

...

 <input type="text" class="form-control" id="name"
 formControlName="name"
 name="name"
 [ngClass]="{'error': isInvalid('name')}"
 [(ngModel)]="review.name">

 ...

 <textarea class="form-control" id="review" rows="3"
 formControlName="review"
 name="review"
 [ngClass]="{'error': isInvalid('review')}"
 [(ngModel)]="review.review"></textarea>

 ...

 <select class="form-control" id="stars"
 formControlName="stars"
 name="stars"
 [(ngModel)]="review.stars">

C4: Using HTTP Post 19

Note the [()] syntax in the binding. This specifies that the binding is active in both
directions – i.e. if the value entered into the form field changes, then the object property is
also automatically changed; BUT ALSO if the value of the model is changed
programmatically, then the value of the form field is immediately updated to reflect this.

We can check that the binding is in place by amending the console.log() in the
onSubmit() function to output the value of the new review object.

File: C4/src/app/business.component.ts

...

onSubmit() {
 console.log(this.review);
}

...

If we run the application and check the message in the browser console, we can see that the
username, review text and star rating are available – but the _id value that identifies the
business is not present (as it is not part of the form specification).

There are a number of ways in which we could rectify this (e.g. providing a hidden field for
the _id value and pre-populating it when the form is constructed), but the easiest approach
is simply to retrieve the business _id value from the Web Service.

First, we update the Web Service to include a public businessID variable that is populated
when the getBusiness() function is called.

C4: Using HTTP Post 20

File: C4/src/app/web.service.ts

...

 businessID;

...

 getBusiness(id) {
 this.http.get(
 'http://localhost:3000/api/businesses/' + id)
 .subscribe(
 response => {
 this.business_private_list = [];
 this.business_private_list.push(
 response.json());
 this.businessSubject.next(
 this.business_private_list);
 this.businessID = id;
 }
)
 }

...

Now that the businessID is available, we can retrieve it from the WebService and add it
to the review object before performing the console.log().

We also include a call to the form’s reset() method to restore the form to its original
state once the new review has been accepted.

File: C4/src/app/business.component.ts

...

onSubmit() {
 this.review.businessID = this.webService.businessID;
 console.log(this.review);
 this.reviewForm.reset();
}

...

Testing the application in the browser should verify that all required data is now available in
the review object and that the form is reset once it has been submitted.

C4: Using HTTP Post 21

C4.4.2 Posting the data to the API

Now that all required information is available, we can create the postReview() function in
the WebService that will accept a review object as a parameter and generate the
http.post() request that accesses the API endpoint.

The http.post() method accepts a URL and a URLSearchParams object containing the
data to be POSTed. As for http.get(), the post() method returns an Observable to
which we subscribe with a function specifying the action to be taken once the post()
request is complete. As we would like the new review to be automatically added to those
displayed, we specify a call to the getReviews() function that causes the updated
collection of reviews to be fetched and displayed.

File: C4/src/app/web.service.ts

import { Http, URLSearchParams } from '@angular/http';

...

 postReview(review) {
 let urlSearchParams = new URLSearchParams();
 urlSearchParams.append('username', review.name);
 urlSearchParams.append('text', review.review);
 urlSearchParams.append('stars', review.stars);

 this.http.post(
 "http://localhost:3000/api/businesses/" +
 review.businessID + "/reviews",
 urlSearchParams)
 .subscribe(
 response => {
 this.getReviews(review.businessID);
 }
)
 }

...

Finally, we can call the new postReview() function from the onSubmit() function within
the BusinessComponent.

C4: Using HTTP Post 22

File: C4/src/app/business.component.ts

...

 onSubmit() {
 this.review.businessID = this.webService.businessID;
 this.webService.postReview(this.review);
 this.reviewForm.reset();
 }

...

Running the application in the browser and submitting a review should confirm that the
new functionality is now complete.

Figure C4.5 Submitting a review

Figure C4.6 Review accepted

